Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells

نویسندگان

  • Hiromu Ito
  • Masato Tamura
  • Hirofumi Matsui
  • Hideyuki J. Majima
  • Hiroko P. Indo
  • Ichinosuke Hyodo
چکیده

Photodynamic therapy and photodynamic diagnosis using 5-aminolevulinic acid (ALA) are clinically useful for cancer treatments. Cancer cells have been reported that 5-aminolevulinic acid is incorporated via peptide transporter 1, which is one of the membrane transport proteins, and has been reported to be significantly expressed in various gastrointestinal cancer cells such as Caco-2. However, the mechanism of this protein expression has not been elucidated. Concentration of reactive oxygen species (ROS) is higher in cancer cells in comparison with that of normal cells. We have previously reported that ROS derived from mitochondria is likely related to invasions and proliferations of cancer cells. Since 5-aminolevulinic acid is the most important precursor of heme which is necessary protein for cellular proliferations, mitochondrial ROS (mitROS) may be also related to peptide transporter 1 expressions. In this study, we used a rat gastric mucosal cell line RGM1 and its cancer-like mutated cell line RGK1, and we clarified the ALA uptake mechanism and its relations between mitROS and peptide transporter 1 expression in RGK1. We also used our self-established stable clone of cell which over-expresses manganese superoxide dismutase, a mitROS scavenger. We studied differences of the photodynamic therapy effects in these cells after ALA administrations to clear the influence of mitROS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial reactive oxygen species accelerate the expression of heme carrier protein 1 and enhance photodynamic cancer therapy effect

Photodynamic therapy using hematoporphyrin and its derivatives is clinically useful for cancer treatments. It has been reported that cancer cells incorporate hematoporphyrin and its derivatives via heme carrier protein 1, which is a proton-coupled folate transporter. However, the mechanism of this protein expression has not been elucidated. In general, the concentration of reactive oxygen speci...

متن کامل

Effect of Hesperetin on the level of reactive oxygen species (ROS) in gastric cancer stem cells: Short Communication

Intracellular reactive oxygen species (ROS) play an important role in cancer stem cell (CSC) function. Hesperetin (Hst) is a flavonoid that has been shown to affect cellular ROS level. The goal of this study was to investigate the effect of Hst on the level of ROS in gastric CSCs (GCSCs). MTT assay was used to evaluate cell survival. Cellular ROS level was measured using 2′,7′-dichlorofluoresci...

متن کامل

مقایسه اثر دو منبع نور لیزری متفاوت بر بازده درمان فتودینامیکی سرطان پستان در شرایط برون تنی

Background and Objective: Photodynamic therapy is a new therapeutic modality for the treatment of cancer. Photodynamic therapy uses an inactive drug and a light source to activate the drug to produce reactive oxygen species that destroy the cancer cells. In the present study, the effect of two different laser light sources on the efficiency of photodynamic therapy was evaluated using a breast c...

متن کامل

Cancer cell-specific mitochondrial reactive oxygen species promote non-heme iron uptake and enhance the proliferation of gastric epithelial cancer cell

Iron is an essential nutrient for life and is involved in many important processes such as oxygen transport and DNA synthesis. However, excess amounts of iron can cause carcinogenesis by producing reactive oxygen species. Thus, the cellular transport of iron must be tightly regulated. In the human body, iron may be present as heme or non-heme iron. The mechanisms governing the cellular transpor...

متن کامل

5-aminolevulinic Acid Conjugated Gold Nanoparticles for Cancer Treatment

In photodynamic therapy (PDT) for cancer treatment, effective delivery of photosensitizer to the target tumor and minimal damage to the healthy cell is of paramount importance. In this study novel biocompatible positively charged (ξ = +33 mV) gold nanoparticles (30 nm average diameter) are conjugated with a photosensitizing precursor, 5-aminolevulinic acid (ALA) at physiological pH (pH 7.2 to 7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2014